Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5156, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431749

RESUMO

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Assuntos
RNA Polimerases Dirigidas por DNA , Poliadenilação , Animais , Humanos , Camundongos , RNA Polimerases Dirigidas por DNA/genética , RNA Mensageiro/metabolismo , Polinucleotídeo Adenililtransferase/genética , Polinucleotídeo Adenililtransferase/metabolismo , Poli A/genética , Poli A/metabolismo
2.
Nucleic Acids Res ; 47(5): 2681-2698, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30726994

RESUMO

Most eukaryotic expression systems make use of host-cell nuclear transcriptional and post-transcriptional machineries. Here, we present the first generation of the chimeric cytoplasmic capping-prone phage polymerase (C3P3-G1) expression system developed by biological engineering, which generates capped and polyadenylated transcripts in host-cell cytoplasm by means of two components. First, an artificial single-unit chimeric enzyme made by fusing an mRNA capping enzyme and a DNA-dependent RNA polymerase. Second, specific DNA templates designed to operate with the C3P3-G1 enzyme, which encode for the transcripts and their artificial polyadenylation. This system, which can potentially be adapted to any in cellulo or in vivo eukaryotic expression applications, was optimized for transient expression in mammalian cells. C3P3-G1 shows promising results for protein production in Chinese Hamster Ovary (CHO-K1) cells. This work also provides avenues for enhancing the performances for next generation C3P3 systems.


Assuntos
Núcleo Celular/genética , Citoplasma/genética , RNA Polimerases Dirigidas por DNA/genética , Transcrição Gênica , Animais , Células CHO , Cricetulus , Citoplasma/química , RNA Polimerases Dirigidas por DNA/química , Células Eucarióticas/química , Células Eucarióticas/metabolismo , Humanos , Poli A/genética , Poliadenilação/genética
3.
Cell Mol Life Sci ; 75(23): 4357-4370, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30043140

RESUMO

Melatonin, a neuro-hormone released by the pineal gland, has multiple effects in the central nervous system including the regulation of dopamine (DA) levels, but how melatonin accomplishes this task is not clear. Here, we show that melatonin MT1 and MT2 receptors co-immunoprecipitate with the DA transporter (DAT) in mouse striatal synaptosomes. Increased DA re-uptake and decreased amphetamine-induced locomotor activity were observed in the striatum of mice with targeted deletion of MT1 or MT2 receptors. In vitro experiments confirmed the interactions and recapitulated the inhibitory effect of melatonin receptors on DA re-uptake. Melatonin receptors retained DAT in the endoplasmic reticulum in its immature non-glycosylated form. In conclusion, we reveal one of the first molecular complexes between G protein-coupled receptors (MT1 and MT2) and transporters (DAT) in which melatonin receptors regulate the availability of DAT at the plasma membrane, thus limiting the striatal DA re-uptake capacity in mice.


Assuntos
Membrana Celular/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Corpo Estriado/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Ligação Proteica , Receptor MT1 de Melatonina/genética , Receptor MT2 de Melatonina/genética , Sinaptossomos/metabolismo
4.
Mech Ageing Dev ; 170: 59-71, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28757326

RESUMO

Accumulation of oxidatively damaged proteins is a hallmark of cellular and organismal ageing, and is also a phenotypic feature shared by both replicative senescence and stress-induced premature senescence of human fibroblasts. Moreover, proteins that are building up as oxidized (i.e. the "Oxi-proteome") during ageing and age-related diseases represent a restricted set of cellular proteins, indicating that certain proteins are more prone to oxidative carbonylation and subsequent intracellular accumulation. The occurrence of specific carbonylated proteins upon oxidative stress induced premature senescence of WI-38 human fibroblasts and their follow-up identification have been addressed in this study. Indeed, it was expected that the identification of these proteins would give insights into the mechanisms by which oxidatively damaged proteins could affect cellular function. Among these proteins, some are belonging to the cytoskeleton while others are mainly involved in protein quality control and/or biosynthesis as well as in redox and energy metabolism, the impairment of which has been previously associated with cellular ageing. Interestingly, the majority of these carbonylated proteins were found to belong to functional interaction networks pointing to signalling pathways that have been implicated in the oxidative stress response and subsequent premature senescence.


Assuntos
Senescência Celular , Fibroblastos/metabolismo , Carbonilação Proteica , Proteoma/metabolismo , Linhagem Celular , Fibroblastos/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...